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Nomenclature

radius or half width of a contact area
radius or half width of constriction region

equivalent flatness deviation (see Fig. 1)

2
AR

interface conductance, h =
thermal conductivity
length of specimen
equivalent length of contact resistance
contact pressure

rate of heat flow

rate of heat flow per unit depth

resistance
Rk Aa

dimensionless resistance, T
radial coordinate

temperature

a temperature difference
constrietion ratio, x = &/b

cartesian coordinate

axial coordinate

surfac2 or specimen 1

swrface or spacimen 2

apnarent contact area

total contact resistance

interstitial suvhstaunce

macroscopic constrictions or contact reglons
izothermal interfacial plane

microscopic constrictions or contact areas

total

iii



1.

Current Status

1,1 Introduction

Oour previous studies [1,2] have led to the development of a restrictive
model which was successful at quantitatively predicting the thermal contact
resistance. Its ability to qualitatively explain many of the apparent dis-
crepancies in the literature and its agreement with the wastly varied
experimental data which were obtained have demonstrated its conceptional
correctness. The current endeavors are: (i) to remove the restrictions
present in the original model (some of the results of such studies have
already been reported [2]), and (ii) to better our understanding of the
basic mechanisms of the thermal contact resistance. The latter is perhaps
our most important objective., One can easily argue that the proposed model
is not capable of predicting the additional resistance of a complex bolted
Joint; however, one must also agree that the proposed model has indeed been
successful in enriching our understanding of the extremely complex problem
of interest. 1In contrast, the numerous studies which have been made with

"more realistic"” surfaces have added little to our understanding and to our

ability to predict the resistance of joints in other physical situations.

The new chamber which was recently constructed is in the process of
being checked out. Some new instrumentation for this facility has not yet
arrived. In addition, it is felt that with the small resources available,
greater emvhasis at the present time on analytic studies might be more
fruitful. Experimental studies will then again be made to evaluate the
results and conclusions drawn from these studies.

Brief descrintions of several investigations which are 1n progress
will now be given. The thermal contact resistance problem can be divided

into two perts: (i) Given the contact geometry, determine the additional



thermal resistance due to the presence of the interface and (1i) Given

the specimen geometry and load, determine the contact areas. The second
rart of the problem is being studied by Mr. McNary. Part of his work was
reported in Reference [3]. Since this work is for his Ph.D. dissertation,
the details will not be available until the thesis is completed. The
obJjective of the study i1s to remove the restriction on the model caused by
the inapplicability of the Hertz's solution when the macroscopic contact
area is relatively large. A further extension of this analysis to include
the influences of thermal strain is also desirable.

Section i.2 describes preliminary results from analytical studies which
show the influences of microscopic resistances on the macroscopic constriction
resistance. Section 1.3 gives the formulation for the extension of the model
to include an interstitial substance.

Section 1.4 describes the results of constriction resistance calculations
for two-dimensional plane constrictions. These calculations are for the
problem of the first type, i.e., given the contact geometry, determine the
constriction resistance. The Hertz's Equation could be employed to determine

the required contact area in some cases.

[
. -
)

The Influence of Microscopic Resistances on the Macroscopic Constriction
Resistance

1.2.1 Formlation of the Problem

In the study of the relative importance of the macroscopic and micro-

*3
scopic resistances it is of great importance to know how the macroscopic
and microscopic resistances are interrelated. It is seen that they are not

independent since the presence of a microscopic resistance would, of cour:se,

*The macroscoplc resistances alweys refer to the large scale or macrosconic

- constriction resistances. The microscopic resistances refer to the comh:iaed.
effects of the film resistance and the small scale or microscopic con-
striction resistances.
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affect the macroscopic temperature and flux distribution and consequently
the macroscopic constriction resistance.
The model employed in [1] is shown in Figure 1. Only one region will

be considered as shown in Figure 2. The governing differential equation and

boundary conditions are as follows:

Q z

f
' 82T 1 BT ofr
% 5r2 T Jz2 )
|
i Hr,L) = TL »
l 0SrZv (2)
L QE (b;,2) = 0,
or L
I l 0<z<1L (3)
! 1 > %E‘ (ryo) = O,
e, o8y i a <rsb (%)
= ™r,z)

Fig. 2 Finite Cylindrical Region

The boundary condition across the macroscopic contact remains to be specified?35
The change in the macroscopic constriction resistance, RL’ if a micro-
scopic resistance, RS, is uniformly distributed over the macroscopic contact
was considered by Holm [4] and also was discussed in [1]. The limiting
sltuations were considered. Holm suggested that if Rs is very large compared
with RL and is uniform over the macroscopic contact area, it followed that
the heat flux through the contact region is approximately uniform. He went

on to assume the flux was constant and determined the macroscopic constriction

For a perfect macroscopic contact, i.e., neglecting R g7 this boundary is
" “simply a constant temperature boundary.



resistance with this boundary condition. Although this boundary condition

is epproximately true, it cannot be employed in the calculation of RL’ a
secondary resistance. A closer examination of the problem shows that if two
specimens have the same radius bL and if the distribution of the microscopic
resistance is axially symmetric (it is not necessary to assume the distribution
is uniform), an isothermal surface exists within the plane of contact. The
presence of the microscopic resistance over the boundary is analogous to a
convective type boundary condition with a finite surface conductance h.** The

boundary condition to be employed in the determination of the total contact

resistance is:

or <
b = - <
+k S (r,0) = h[®(r,o) TOJ, 02r=a (5)
where h is a function of r if the microscopic resistance is not uniformly
distributed; otherwise, it is a constant. To is the temperature of the

isothermal surface in the contact plane. The contact resistance is given by:

R = L o _ _L (6)

q 2
kwa

where q is the rate of heat flow through the region. The dimensionless

contact resistance is simply:

2
* k(WbL) R AL \
R = —5— = %, (7
L L

The region of the microscopic resistance is assumed to be of negligible
"thickness. This assumption is probably a valid one.



It is seen that in order to calculate the contact resistance the heat
flow q is required. To determine q Equation (1) with the boundary conditions
(2) through (5) must be solved; however, first h must be determined.

Consider two regions of different materials in contact as shown in
Figure 1. Assume a known microscopic resistance is uniformly distributed
across the macroscopic contact area. (A non-uniform axially-symmetric
distribution would add little complication; however, the results would be
of less general value.) If one is to consider only one region for the
solution of this problem, it is required that the flux distributions across
the contact area of each region are identical. From the differential eguation
and boundary condition it can be seen that this will be the case if the

microscopic resistance is partitioned such that

a2
"k

(8)
ky 2
1
Also h = and R, + R, =R .
2 1 2 8
T aL R
Therefore:
1
Rl = Rs k,
1+ —
ks
or
1+ Ei
F ky
2
b, = = b [1+¢] (9)
2 s
T aL RS 2

It can thus be seen that the requirement of equal flux distributions

through the contact area is satisfied if region 1 has a distributed conductance



T

given by (9). The boundery condition (5) is then valid along the interfacial
plane. It is therefore possible to find the contact resistance between any
two mating materials separated by a small scale resistance, Rs, by finding
the conlact resistance of one of the regions with the conductance at the
interface given by (9). The value of the dimensionless contact resistance
would bs the same for both regions; hence, the total resistance could be
easily calculated.

l.,2.2 Solution Procedure

As previously discussed in Reference [3], little success has been
achieved in solving problems with mixed boundary conditions analytically.
For thnis reason, the numerical procedure employed in the solution of the
problem for the case of negligible microscopic resistance (see Ref. 3) was
employed. A difference equation for the boundary OX r=< 8y is now required
in sddition to those given in [3]. In terms of the nomenclature of [3], a

general difference equation valid for the points on this boundary is:

h, Ar
Ar Ar 1
1+ 5;5) Tl,j+1 + 2 Tb,j + (1 -~ 5;3) Tl,J-l + K T,
hl ar
- (44 5 )T,y = O (10)

vwhere hl is given by Equation (9). The computer program was modified accord-
ingly and the preliminary results which were obtained follow.

*¥
1.2.3 Results of Numerical Computations

The object of this study was to determine the influence of microscopic

reslstances on the macroscopic constriction resistance. However, the question

*%
These computations were made by Mr. Bruce Spencer while taking a special
‘problem course under the author's direction.



which ore really needs to answer, from an engineering standpoint, is what
error dces one commit if it is assumed that the macroscopic and microscopic
resistances are independent and the total contact resistance is determined
by a simple addition, i.e., by assuming the two resistances are in series.
Furthermore, it is seen that the macroscopic and microscopic resistances
have lost their identity since one can only define a resistance between
isothermal planes. Thus, the macroscopic resistance used in the calculation
of the contact resistance is its value for the case when RS = 0 and the
microscopic resistance used in this calculation is the value of the contact
resistance for the case when bL is_made equal to aL.

A series of numerical calculaﬁions were made to determine the total
dimensionless contact resistance R:£ for the problem as specified by
equations (1) through (5) for several values of the comstriction ratio
xL(=aL/bL), and for several lengths. This solution was compared with the
result obtained by adding R: +»R: « In these calculations, values of R:
and XL were assumed; R: was obtained from Ref. 3.

Table 1 gives & comparison of these results, In examining the apparent
trends in these values it must be remembered that no great effort was expended
to remove itruncation errors. The results are of an exploratory nature;
minimum computer time was expended in obtaining these answers. Tables 2, 3,
and 4 give the specific values employed in obtaining Table 1.

The conclusions which can be drawn from these results are:

1. The total contact resistance of an interface is always greater

thaﬁ the value obtained by assuming R: and R: are independent
resistances in series.

*
2. The error committed by assuming that Rs and R; are independent
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Table 1 Dimensionless Ratio [
R
L

*
ct
* R*
T

AANGSY .2%3 .500. .833
.200 1.0405 1.0372 1.0704
*=2|  .600 1.045h 1.0621 1.0925
1 1.00 1.0458 1.0641 1.0891
* o
[+ 4
* .200 1.0076 1,0078 1,021k
91 600 1.0112 1.0163 1.0366
**; 1.00 1.0125 1.0%66
o
* .200 1.0466 1.0377 1.0842
Yl .600 1.0471 1.0520 1.092k
U
| 100 1,053 1.0870
Table 2 Comparisons for R:
L/oN_ x
NG .0%% .500 ,833
R = 2.281 : - .5380 R: = .06
»* ¥*
.200 R, = 1l.772 = .3830 = ,04O7
L To53 g L9210 g .0867
Ry= h.217 RY,= 9553 Ry= .0928
R® = 2.281 ¥ . L5380 R = .0k60
8 S S
- % * ¥*
R i o R
R:£= k745 = 1.135 Ry,= .10k
* * *
R = 2,281 R, = .5380 R, = .0L60
* : * *
1.00 = 2,281 = .5380 = 0460
g I.562 g 1.0760 g .0920
¥* %* ¥*
R~ b, 771 Rct= 1,145 R, 4= .1002




* *
Table 3 Comparison for Rs 2« 10 RL

L/bL X «233 .500 .833
R: = 22.810 R:.-: 5,380 R: - .h590
200 R;: = 1.772 R{j = .3830 R;j = 0407
2L ,582 5,7630 5997

* * *
R .= 24,77 R = 5.808 R, 4= .5104
R: = 22.81 R: = 5.380 R: = .4590
.600 * - 2.058 * . .5306 X .0k59
g 35,068 &’ 5.9106 L 5049

* * L 3
Rct= 25,35 Rct_ 6.907 R~ . 5234
R: = 5.380 R: - .4590

* ¥*
1.00 = .538 = .0k60
& 5.918 Ri .5050

*
Ryq= 5-992 R = -5235
Table 4 Comparisons for R: = 0.2 R,
L/bL X, 233 500 .833

R: = Jhs62 R: - .1076 R: - .0092

3 * ¥*
200 = 1.772 = .3830 R, = .0hO7
g 5.0080 g ~I906 L el /Ts]s)

*
R:t= 2.3%2 R:t.. .5091 Ry,= 0541
R: - LLs6e R: - .1076 R: - .0092
600 ¥ . 2.258 ¥ = L5306 ¥ = .0u59
g 2.71h2 1 L6382 g .0552

»* * *
R, = 2,8h2 R = 6714 R, = ,0603%
R: - .1076 R: = .0092

¥* »*
1.00 = .5380 = ,0460
L RIS B’; .0552

%*

R,¢= .6800 Rc &= .0600
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and that the total contact resistance is simply (R: + R:) is
smell in all cases and, considering the nature of the problenm,
could easily be neglected.

3. This error vanishes if R:>> R; or if R:>> R:. |

k. The apparent macroscopic constriction resistance (R:£ - R:), in
the presence of microscopic resistances can differ widely from

*
the value obtained when Rs is equal to zero.

1.3 The Generalization of the Model to Include an Interstitial Material

The investigation has been centered in the past on the study of clean
interfaces in vacuum environments. This approach was logical since:

1. The metal-to-metal conduction mode of heat transfer across an
interface is the most fundamental. Without a thorough under~
standing of the metal-to-metal conduction mode incorrect
conclusions could easily be drawn from experimental measure-
ments of interfacial resistances for the combined mode case.

2. The problem is of greater importance in the absence of inter-
stitial conduction since the contact resistance is then much
larger.

3. The ability to predict the magnitude of the contect resistance
was poorest for interfaces ln vacuum environments and the need
to know these values was most urgent in this area.

It is felt, however, that a limited parallel effort on the study of
interfaces with the addition of the interstitial conduction mode would be
profitable since:

1. This study could be conducted in conjunction with the present

experimental and theoretical investigations with relatively little

additional effort.



2. This study might reveal reliasble methods of decreasing the
magnitude of the thermal contact resistance in a vacuum
environment. For example, it could lead to more successful
theoretical predictions by giving a method of insuring the
lack of importance of microscopic resistances which are,
of course, difficult to predict.

3, The study should prove worthwhile in its own right for the
following reasons. First, the problem is of interest and
importance in other environments as, for example, in nuclear
reactor cores, atmospheric operation and testing of space
vehicles, etc. Second, satisfactory materials may be developed
or may already exist for employment as interstitial substances
in vacuum environments for both short and long duration flights.

The formulation of the problem and a discussion of the solution procedure
being pursued will now be given.

Since the thickness of interstices is in most cases small compared with
other dimensions, both natural convection and conduction parallel to the
interface can be neglected in the calculation of the heat transferred through
the interstitial substance.

The basic model developed in Ref. [1] will again be employed in the
study of this aspect of the problem. Figure 1 gives the geometry of interest.
The flatness deviation or waviness which gives rise to macroscopic con-
strictions is simulated by spherical caps on the end surfaces of the cylindri-
cal contacting members. The distance, f(r), from the contact plane to the

surface of the specimen at zero load is, by definition:
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£,(r) = (E"—)2 4 , i=1lor2 (11)

L

The distances dl and d, are indicated in Figure 1. The distance between the

2
surfaces at zero load can also be obtained from (11) if di is replaced by the
total flatness deviation dt(= d1 + de). The distance between the surfaces is,

in general, a function of the apparent contact pressure p, the initial geometry
and the radial coordinate r. This distance will be called ft(p,r). For the

geometry of the present model this distance at zero load is:
r 2
200) = () 9, (12)

This function at finite contact pressures will be known only after the finite
elastic contact problem being considered by McNary [3] is solved. It is
assumed that this distance is negligible within the macrcscopic contact area.
This is equivalent to neglecting the microscopic resistances. The presence
of even a poor interstitial conductor such as air should vastly decrease the
microscopic resistances vwhich were found to be small even for interfaces
without an interstitial substance. Thus, the assumption that ft(p,r) = 0
ifr< ay is probably valid. The results of the present macroscopic analysis
should further substantiate this assumption.

The present problem is seen to be of the same nature as that presented
in Section 1.2. The microscopic conductance hS now becomes §;T§§;7 where
k.f is the thermal conductivity of the interstitial substance. Boundary
condition (4) is no longer applicable since the interstitial material provides

a conductive path over the complete apparent contact area. Boundary condition
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(5) now can be applied over the entire contact area:

oT
+k = = #n(T -T), 0Sr<b (13)
where
ke ky
h = A [1+ -—ke ] (1b)

Thus, it is seen that in this case the conductance, h, of Eq. (13) is a
function of the contact pressure and the radius r. For a given load, h would
be a function of r only. If r= & s h becomes infinite since ft(p,r) =0

(a finite value could be employed if desired and the importance of microscopic
resistances could then be easily seen); therefore, for r < &y one could either
employ the boundary condition T(0,r) = To or simply use a very large value

of h in the boundary condition described by (13).

The solution procedure being pursued for the problem as formulated is
similar to that employed in Section 1.2. Only minor changes in the computer
program are again required. Only zero load solutions can be presently obtained
since, in general, the function ft(p,r) is not known. Approximations of this
function could be made to obtain the bounding values of the contact resistance
as a function of load w

The fineness of the grid required for the numerical calculation of this
combined mode problem should be considerably coarser than that required in the
absence of the interstitisl conduction mode [see Ref. 2]. The discontinuity
in the heat flux at the point 2 =0, r = a is no longer present since the

variation in h with respect to r is in general continuous.
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1.4 The Influence of the Region Geometry on the Macroscopic Constriction
Recsistance--Plane Geometry

1.4.1 Introduction and Problem Formulation

It is usually assumed that the contact areas which are formed between
contacting bodies are circular in nature. For this reason most of the effort
expended . in the calculation of constriction resistances was concentrated on
circular contact areas. The most formidable of these problems is probably
that of the finite cylindrical region. This problem was solved by numerical
calculations and the results of these calculations were reported in Ref, 2.
Extensions to this solution were reported in Sectioms 1.2 and 1.3 of this
report.

Interest was recently expressed in two-dimensional plane constrictions
[5]. The numerical sclution procedure recently developed for the axially-
symmetrical case {2] was easily modified to the plane problem. (Several
Plane cases were actually employed in the early development of the computer
program.) Therefore, it seemed worthwhile to repeat these calculations for
the plane case.

The region under consideration is shown in Figure 3. The governing

differential equation and boundary conditions are:

2
31 | %

T gy—g’f Sz = 0 (15)

N
| T(y,L) = T, , -b Sy Sb (16)

€< p —>
L % (byz) = 0, 0 <z <L (17)
dr b Zyz-e
a e v 5 (y,0) = 0, _ <y<b (18)
b - Ty )

T(y)o) = T ,-asy=<a (19)



16

A differencing procedure similar to that used in [2] was employed in
the numerical solution of these equations. The schemes used to speed
convergence of the iteration procedure were also similar. The grid network
employed is shown in Figure 4. Equal increments were used in the y and 2z
directions. A coarse network was used away from the interface and a fine
network was employed near the interface. These networks were Jjoined with
triangular elements. The number of columns m, and the number of fine rows k
could be varied; n was dependent upon the length L and the value of m (see

Figo )'l') .

N

SR Li— —— (a,m)

(k:l) 1

\\ %\\‘/ \/ \/ 5 (k,m)

(1,1)"

mqr ..

Figure &L
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1.4.2 Results of Numerical Computations

Since in the particular solution procedure which was employed, solutions
were obtained for two different spacial increments,** an estimate of the
truncation error was possible. The error was estimated to be several percent,
which is of relatively little importance for a problem of the nature of thermal
contact resistance. The exact solution which was later obtained for the
limiting case of L >> b showed that the average error was approximately 2%.
Since this small error was of little concern, all the numerical computations
could be carried out in approximately 8 minutes of production time on the
7094 digital ccmputer. Before these results are reported, e brief discussion
of the nomenclature will be given.

According to the usual definition, the constriction resistance, R, is:
R = R, -R (x = 1.0) (20)

where Rt is the total resistance and x is the comstriction ratio a/b.
A dimensionless resistance as defined in Ref. 2 will be again employed.

It is, by-definition:
R . (21)

where Aa is the apparent contact area, k is the thermal conductivity of the
material, and b is the half-width of the region. (b was the radius of the
region in the cylindrical problem.) Since the resistance R is inversely
proportional to the depth, the dimensionless resistance is independent of

the depth. For convenience a unit depth will be employed. Therefore,

%
17 and 49 columns were employed in the two solutions. The first solution
""was used as an initiel approximation for the second.
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*
R = 2k R for the plane region of width 2b. The dimensionless constriction

resistance is

R = — (22)

vhere q' is the rate of heat flow per unit depth.

The results obtained from the numerical solution are given in Table 5.
The dimensionless constriction resistance as defined by Eq. (22) is listed.
It is the constriction resistance of one region only. For two plane regions
of the same width, length and type of material in contact, the total macro-
scoplc constriction resistance or the so-called contact resistance is twice
the value given in Table 5. Table 6 shows the variation of the ratio
R*(L/b) / R*(L/b = =) with x and L/b.

**
1.4.3 FExact Solution for the Case of L >> b

Constriction resistance problems are formidable ones due to the presence
of the mixed boundary condition along the boundary forming the plane of
contact. The boundary is isothermal over the -contact area and is a zero flux
surface over the remainder of the plane of contact. This suggests that one
epply conformal mapping techniques to try to eliminate this mixed boundary
condition. These techuiques, of course, have only been successfully employed
for plane regions; therefore, these methods of solution were not possible for
the axially symmetric case studied in [2].

The boundary conditions of the types given by equations (16) through (19)
are invarient with a change of variables arising from a conformal transfor=-

mation. Therefore the new form of the boundaries is of primary interest.

The nomenclature in this section was chosen to conform with standard complex
variable nomenclature; conscquently, there are several minor conflicts with
that employed elsewhere., The complex variables used are: 2z = x + iy;

z' = x' + iy'; z" = x" + iy" and w = u + iv; therefore, a/b is now used
for the constriction ratio instead of the letter x which was previously
employed.



19

q/T1 pus X Jo uoizoungd B 88 (° = n\aV*m\An\qv*m otgTy 9L 9 oTqel

666° g66° g66° L66° c66° G66° c66° 666° Lee6* 966° g66° g66° 0°T
H66° £66° €66° 6g6° lg6* ogé° +86° 196° ¢g6” ¢g6° Lg6® 686° AN
066° 686° €g6° 6l6° 416* TL6° L96° Lo6’ 896" 696° aL6* 9L6° 629°
¢g6° ¢lé* Lo6® 145 oH6° 6¢6° 6" T¢6° o¢6° He6® 0t6* gh6* 005*
Lo6* Ln6* ge6° co6* G88° 2lg’ 298° 9¢g8° Leg® 98° ¢lg* og8"* cler
gT6* 698° ¢eg* H8L* #GL* oglL® qTL: goL* 60L* 8TL* Lele Lol ose*
0 0 0 0 0 0 0 0 0 0 0 0 o
nmg* T8L° 6TL- 949° 66 * TS 691 gon*  Ahet 183" 612’ 95T ”wwhwmm
(==a/1) 8/(9/1) 8
n\q pue X JO uorzoung v S8 *m 20UB]STSSY UCIFOTIGSUO) TSSTUOTSUSMII YL ¢ oTasl
(2020°) (66¢0°) (LS90*) (L66O® (a4T°) (8e6T*)  (LS3*) (weg*) .(gen°)  (L4S*) (ook®) (T16°) -
--- --- €9590° -—- 9THT* 66T #952* ceeee 6Ley* CoHs* 8669° oTtT6* G2t
gTO20*  THELO*  LSG90°  #E660° cTHT® 0£6T* gese* G3ge g 05HS* ¢869° €606° 0°1
L0020°  926C0°  42590°  99pe0*  TORTT  OT6T®  O¢Se3®  9geet  gTent  68Lst TI69  2T06° osL*
666T0°  168¢0°  29490°  ¢9lL60° €eeT” 28eT’ ggne® 0geL” SHTH® 00¢S* 9089° c688° 629°
986T0°  #58¢0°  €5¢90°  T2560° e T* 02g1* oowe® 60TC* 686%° Lots” 6L69° Leag’ 00¢*
¢G6TO" .2Hlgo®  LBo90°* . OTO60* ATAN 6g91°  <T22° gsga* Logz* oTly® Lo19°* 9608° cles
26QTO*  ¢EHco®  9THSO®  #TgLO’ 6901° STHT® 8¢t G9¢e*t geoz* ge6e” 091" 1g69° ose*
0 0 0 0 0 0 0 0 0 0 0 0 0
we*  Tel  6TL* 989" €St TSt 6oRt  gowt et BT 6T 95T Y1

qQ/IV = ¥4

%*




20

According to Ref. [6] the transformation z' = sin z transforms the semi-
infinite strip into the upper half of the z' plane as shown in Figure 5.
Two more successive transformations are then applied. The first one

z" = zt/sin z is a simple magnification by the factor 1/sin a. This
allows the use of the transformation w = sin'l 2", which is the inverse
of the initial transformation. It transforms the upper half of the 2"
plane into a semi-infinite strip. It is seen that the initial geometry
is again obtained, however, the mixed boundary condition has been removed.
The successive transformetions which were employed sre clearly indicated

in Figure 5.

The temperature distribution in the w plane is easily seen to be:
t
T = T - ——-——q v (23)

where q' is the rate of heat flow per unit depth. To obtain the solution

of the original problem, v must be determined as a function of the original

variables x and y.

Consider first going from T as a function of v to T as a function of

x" and y". The transformation is:

1

Z = s8inw = sin ucosh v + i cos nsinh v
Therefore:
ué ne
X~ L X~ _ 1 (2k)
cosh® v sinh® v

Equation (24) shows that the isotherms in the z" plane are ellipses
whose centers are at the origin and the foci are at y"= 0, x"= ¢ 1l. From

the definition of an ellipse it follows that:
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Fig. 5 Successive Transformations Employed
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2 coshv = [(x" + 1)2 4 y.na]l/e + [(X" - 1)2 + yvr2]l/2

or:
v = n [v+ (¥2 - 1)Y2
where:
Y = %{[(x" +1)% + y"z]l/2 + [(x" -1)2+ y.,2]1/2}
Also:
o = sin x :ros: y and o= cos.x ;ing ¥y
sin 5 5 sinz ¢

therefore, in terms of the original variasbles the temperature distribution is:

1
T = T -2 {Jn[Y+(Y2-l)l/2]} (25)
° Tk
where
2
Y = ———-J-'-—TT--—-; {[(sin x cosh y + sin g-%) + cos® x sinh® Y]l/2
2 sing =
2 b
2
+ [(sin x cosh y - sin l:r-;z—) + cos? x sinh® y]l/ewr (26)
J

The constriction resistance is of main interest. It can be obtained by
considering a value of y = Y. vhich is sufficiently large such that the
temperature is indepeadent of x. The constriction resistence is then given

by:
| [m( - T ] [T(y -7]
R = y:)la/b — - - 'a/bd - (27)

oo ] a/pm1
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If y is very large,

~ _ a5
T Z To % In2Y
and
y = cosh y
sin ra
2D
Therefore:

(28)

*
e 2 2]
in

Equation (28) is valid for all possible values of the constriction ratio,

WV
o'l

a/b; however, it fails to apply if L/b <1 as can be seen from the numerical
results given in Table 6., Table 7 compares the exact solution with the

numerical resultse.

*
R
i ? !. | i ‘
x=8a/b {.156 |.219 | .281 (.34h 1,406 L. 469 !.531 594 ;.656 |.719 |.78% i.84k
Exact i ir 1 ; _ :
Solution ||.901 !.693 | .541 ;.k2hk |.330 |.253 | .1909; .1395 .0977| .06k3|.0383i .019
(Eq. 28) '
Numerical '
{Table 5) {1,911 }.700 | .547 |.L28 {.334 |.257 | .1939{ .142 | .0997} .0657| .0395| .020
Percentage
Differencel{1.2 1 {11 .9 1.2 (1.6 1.5 [1.8 (2.1 ;2.2 |3.1 4
¢ | i

Table 7 Comperison between Exact and Numerical Solutions
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Proposed Future Research

Future work will proceed along the lines outlined in the various sub-
sections of Section 1, The Current Status. It 1is seen that many of the
current studles are incomplete but hold promise of substantial reward.

Experimental investigations to substantiate the analytical studies
should also be conducted; however, the funds and time available may not

permit such Investigations.,
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